Here at MyDrive we are completely data-driven and as such we need to collect as much data as possible. This data is then analysed by our data scientists and/or used for Machine Learning purposes. To collect all that data we have designed and created our own iOS data collection app (a.k.a. the iOS awesome app) that silently records all our movements (lovely, isn’t it?).

Now let’s get to the technical part. The application has been written in Apple’s brand new programming language: Swift, and we started developing it since it was in beta version, so that means that parts of our codebase had to be rewritten to adopt the incoming changes from any new released beta.

That has been my first hands-on time with Swift and I have to say that I like it. Although I used to like it more in one of the betas than in the current first release. The idea of writing

if var v = some_method() {



if some_var? {


rather than:

var v = some_method()
if v != nil {


was, IMO, really a cleaner way of doing nil variable testing, but, for some reason Apple decided to remove that feature.

Apart from that detail, I think that the language has some ‘must haves’ and cool features such as closures support, tuples, multiple return values, variable type inference and functional programming patterns. It also has some which are not so cool like optionals, dodgy casting errors, different parameter names from within or outside functions, and the fact that it is still very young and things are likely to change in the short/mid term.

Finished giving my first impressions on Swift, let’s now move on to the so called ios awesome app and particularly to the most technically interesting part of it that is how we managed to be able to record accelerometer data for hours without running out of memory, because, as you have guessed, our first approach was to store all the accelerometer observations in an array structure and then, when finished recording, dump it for gzipping and submitting to the cloud storage.

That ‘all in memory/brute force’ approach worked not bad for a while, given that we were collecting data at 1Hz frequency, but when we required to start recording data at higher frequencies (30 and 60 Hz), problems soon appeared.

After spotting the cause of the issue, we decided to create a custom NSOperation meant to run outside the mainNSOperationQueue that, from time to time simply dumps the contents of the array holding the accelerometer data to a file in disk through a NSOutputStream and that worked fine except for the fact that after some time using the app we realised that the last batch wasn’t fully dumped (failed to wait for the dumping queue to finish before reading for gzipping).

Once solved, the code looks more or less like this:

func addDataRow(...) {

  if data.count >= 300 {
    let toBeDump = data
    data = [Row]()

This piece of code simply appends data to an array and when it’s reaches a size, copies it to another variable and clears it to avoid it becoming too large.

func dumpArray(data: [Row]!) {
  let op = CSVDumpOperation(file: filePath, data: data)
  if lastOp != nil && !lastOp!.finished {
  lastOp = op

The copy is then given to a custom NSOperation to be dump to disk outside the main operation queue. Those operations are executed sequentially to avoid data being disordered.

The dump operation looks like this:

class CSVDumpOperation: NSOperation {

  let data = [Row]()
  let os : NSOutputStream

  init(file: String, data: [Row]) {
    os = NSOutputStream(toFileAtPath: file, append: true)

    super.init() = data

  override func main() {
    for row in data {
      let rowStr = "(row.x),(row.y),(row.z)...n"
      if let rowData = rowStr.dataUsingEncoding(NSUTF8StringEncoding, allowLossyConversion: false) {
        let bytes = UnsafePointer<UInt8>(rowData.bytes)
        os.write(bytes, maxLength: rowData.length)


This CSVDumpOperation simply opens a NSOutputStream to the file and writes there the csv formatted contents of the given array.

And that’s it!, with this simple approach for this simple application we intend to collect hundreds of hours of different activities for further analysis.